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Abstract

This paper presents and motivates a counterpart theoretic semantics
for quantified modal logic based on a fleshed out account of Lewis’s no-
tion of a ‘possibility.’ According to the account a possibility consists of
a world and some haecceitistic information about how each possible in-
dividual gets represented de re. A semantics for quantified modal logic
based on evaluating formulae at possibilities is developed. It is shown that
this framework naturally accommodates an actuality operator, address-
ing recent objections to counterpart theory (see [2], [1]), and is equivalent
to the more familiar Kripke semantics for quantified modal logic with an
actuality operator.

Ordinary modal discourse is full of attributions of de re modality. Not only
could things in general have been different, but they could have been different
for a given individual. Take Humphrey for example. Humphrey is a jack of all
trades; he could have done many things. He could have been a rock star, or
he could have won the elections. He could have even been a figure skater. So
what makes such unremarkable matters true? Do we pluck Humphrey from his
comfortable home world, vary things around him and see if we can make a figure
skater? Or do we put Humphrey to one side, instead look at the men Humphrey
could have been like, his counterparts if you will, and see whether there are figure
skaters among them? Perhaps we can agree on this: Humphrey could have been
a figure skater because there is some possibility that represents him as one. But
even that does not tell us much. What does it mean for a possibility to represent
Humphrey as a skater? Must Humphrey do the representing or could someone
else do it for him?

It is with these questions in mind that we consider what kind of framework
is best placed to fashion a semantics for modals in English. Should we follow
the tradition of Hintikka, Kripke, Montague and others and take our cue from
quantified modal logic (QML), or should we follow Lewis and set things up in a
first order counterpart theory (CPT)?

For many people counterpart theory is unattractive because of its syntactic
complexity, unwieldiness and extravagant ontology, including commitments to
non-actual possibilia and perhaps, even, modal realism about worlds. On the
other hand QML seems to be compatible with a modest actualist ontology. Be-
ing a language of boxes and diamonds it does not overtly quantify over worlds or
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mere possibilia. The effect of talking about non-actual individuals, say, the pos-
sible existence of unicorns, may be achieved innocently by quantifying over them
within the scope of an operator. Similarly QML is better placed as a framework
for theorising about the compositional semantics of English. It mimics English
closely in its syntax and semantics, containing both operators and quantifiers.
According to CPT, however, we should expect to see counterpart quantifiers
floating about all over the place at the level of logical form. Much like event
semantics, CPT does not reconcile well with the apparent syntax of the En-
glish expressions it is targeted to capture. Finally, it has recently been argued
that CPT cannot be extended to account for slightly richer languages; partic-
ularly languages containing actuality operators ([2] [1].) In comparison, it is
fairly straightforward to add an actuality operator to QML under it’s standard
semantics.

That said, syntactic objections do not always tell decisively against a the-
ory. Russell’s theory of descriptions is a case in point: his syntactic claim about
the logical form of description sentences is largely rejected, but his account of
the truth conditions of such sentences still lives on. The same may be true of
Lewis’s account of modal predication, but in order to see this we must clearly
distinguish between these two aspects of Lewis’s account. The purpose of this
paper is to provide a counterpart theoretic semantics for the language of QML
rather than a mere translation from one to the other. The upshot is that one
can mimic Kripke’s original semantics for QML quite closely using counterpart
theoretic notions whilst retaining the simple syntax and ontological neutrality
of QML.1 Indeed, Kripke’s original semantics comes out as a special case of
counterpart semantics in which the counterpart relation is the identity relation.
The account naturally accommodates an actuality operator thus answering the
concerns raised the by Fara and Williamson. In §1 I outline the technical dif-
ficulties involved in giving QML a counterpart theoretic semantics especially
with respect to actuality operators and suggest we can solve this shortcoming
by appeal to David Lewis’s distinction between worlds and possibilities. In §2
I outline the semantics in further detail and show that the logic coincides with
that validated by the most general class of Kripke models. In the appendix I
address some miscellaneous issues such as how identity should be treated in the
framework, and extensional formulations of the theory.

1 Counterpart semantics

A theory of counterparts is desirable for a number reasons. For someone, modal
realist or otherwise, who thinks that individuals are always worldbound a coun-
terpart theory seems crucial. Metaphysicians that want to say that Humphrey

1Of course, it will still appear that we are quantifying over non-actual objects metalinguis-
tically when we give our semantics in terms of counterparts. However this only puts us in
the same position we would be in if we adopted Kripke’s semantics for QML. See, for exam-
ple, Menzel [10], Jaeger [5] and Fine postscript to [11] for various attempts to address this
problem.)
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is strictly and literally speaking identical to a poached egg in some world, that
a statue is identical to the clay that constitutes it or want to deny purely haec-
ceitistic differences between worlds, but also wish to hold on to our ordinary
language claims about the way an object could have been, may also find a need
for counterpart theory. Someone might even deny that interworld identity state-
ments make sense at all. The fact that they seem to make sense (in philosopher’s
English) could well be an artifact of our models which are constructed from ac-
tual individuals between which we can make sense of (intraworld) identity com-
parisons. It seems natural for someone with this view to look to counterpart
theory instead.

Lewis’s original 1968 formulation of counterpart theory, however, has seen
it’s fair share of problems ([4], [9], [7] footnote 13) and has undergone various
transformations by Lewis and others ([9], [12], [3].) The most recent round of
problems, affecting all the aforementioned versions, are those raised by Fara and
Williamson [2] associated with translating sentences containing the actuality
operator into counterpart theory. It is this issue that I am primarily concerned
with here.

Fara and Williamson show that various natural ways of translating sentences
of QML with an actuality operator, QML@, fail and thus, insofar as that part
of English is correctly intertranslatable with QML@, counterpart theory fails to
faithfully represent English. To be precise, these translations fail because they
translate inconsistent formulae of QML@ to consistent formulae of CPT.2 One
might quibble that this is too stringent a criteria of failure. For example, one of
the features of counterpart theory is that it has a non-standard logic of identity
and allows for failures of the S4 axiom. However, as we shall see, these worries
are irrelevant as the examples do not turn on these issues.

Let us outline Lewis’s translation of QML into counterpart theory and see
how talk about actuality might be accommodated. I shall formulate Lewis’s
theory with two primitive predicates: Ixw and Cxy to be read as ‘x is in w’
and ‘y is a counterpart of x’ respectively, a name, w∗, for the actual world, and
two sorts of variables: w, w′, that vary over worlds and x, y, z which range over
individuals.

A way to translate a formula of QML into Lewis’s counterpart theory is
described below. Translation is always with respect to a world variable.

(Px1, . . . , xn)w 7→ Px1, . . . , xn

(¬φ)w 7→ ¬(φw)

(φ ∨ ψ)w 7→ (φw ∨ ψw)

(∃xφ)w 7→ ∃x(Iwx ∧ φw)

(3φ)w 7→ ∃w′∃x1, . . . , xn(Iw′x1 ∧ . . . ∧ Iw′xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn ∧ φw
′
)

In the last clause t1, . . . , tn are the free terms in φ.

2‘Inconsistent’ here is presumably supposed to mean more than merely ‘unsatisfiable ac-
cording to the Kripke semantics’.
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Fara and Williamson note that extending this translation to the richer lan-
guage containing an actuality operator, QML@, is not as simple as it seems. To
demonstrate we’ll consider the two most obvious translations

(@φ)w 7→ ∃x1, . . . , xn(Iw∗x1 ∧ . . . ∧ Iw∗xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn ∧ φw
∗
)

(@φ)w 7→ ∀x1, . . . , xn((Iw∗x1 ∧ . . . ∧ Iw∗xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn)→ φw
∗
)

where t1, . . . , tn are the free terms in φ. To illustrate: to say that Humphrey is
actually a figure skater is to say that he has an actual figure skating counterpart,
or to say that all his actual counterparts are figure skaters, depending on which
translation we choose.

The problem with both of these suggestions is that they both translate the
patently inconsistent (1) into a consistent formula of counterpart theory.

3∃x(@Fx↔ @¬Fx) (1)

If we adopt the first translation we get ∃w∃x(Ixw ∧ (∃y(Iyw∗ ∧ Cxy ∧ Fy) ↔
∃y(Iyw∗∧Cxy∧¬Fy))) and ∃w∃x(Ixw∧ (∀y(Iyw∗∧Cxy → Fy)↔ ∀y(Iyw∗∧
Cxy → ¬Fy))) if we adopt the second. But both these come out true if there
is some possible object that has an actual F counterpart and an actual ¬F
counterpart or if there is a possible object with no actual counterparts. If
Humphrey has no actual counterparts, he has no actual F , nor ¬F counterparts
so according to the first suggestion he’s actually F if and only if he’s actually
¬F . Similarly all his actual counterparts are F and are ¬F so according to the
second schema he’s also actually F if and only if he’s actually ¬F .

Fara and Williamson generalise these problems in various ways to allow
for alternatives to the two natural clauses, and to apply to other versions of
counterpart theory. To see the source of the problem, however, this simple
example will do for now.

At the heart of the problems seems to be the thought that one and the same
world can represent an object in many different ways, or not represent it at
all. So let us start by making a distinction: distinguish between ways things
could have been, i.e. possible worlds, and ways things could have been for a
given individual. For example, there are ways things could have been that do
not represent ways things could have been for Humphrey; worlds that don’t
contain Humphrey or anything resembling him, for example, do not represent
ways Humphrey could have been. Conversely a single world might represent
many ways Humphrey could have been - it might contain many of Humphrey’s
counterparts.

This distinction is blurred on Lewis’s ‘68 account, but irrelevant when we are
talking only about possibility and necessity: there is a way things could have
been for Humphrey in which he is a figure skater precisely if there is a world
with a figure skating counterpart of Humphrey. When we are talking about
specific ways Humphrey could be, say, the actual way, then the distinction
becomes important. When we are talking about the way things actually are
for Humphrey we are not just talking about the actual world, but how it is
for Humphrey. No condition of the form ‘something (everything) of a certain
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kind in in the actual world is a figure skater’ will do; it must be of the form
‘some particular thing in the actual world, Humphrey’s representative in w∗, is
a figure skater.’ For the standard QML semanticist the choice of representative
is simple - it’s Humphrey himself. But for the counterpart theorist choosing
a representative is not an intrinsic feature of the world; there may be several
candidates or none.

It seems that worlds alone are not suitable for characterising the de re possi-
bilities for an individual - ways that Humphrey could have been - worlds must be
supplemented with a representative. This distinction is actually due to Lewis.
It doesn’t find its way into his formal counterpart theory, but he makes it very
clear that in admitting multiple counterparts in a single world we are cutting
possibilities finer than worlds:

“To illustrate, consider these two possibilities for me. I might have
been one of a pair of twins. I might have been the first-born one, or
the second-born one. These two possibilities involve no qualitative
difference in the way the world is. [...] The haecceitist says: two
possibilities, two worlds. They seem just alike, but they must differ
somehow. They represent, de re, concerning someone. Hence they
must differ with respect to the determinants of the representation de
re; and these must be non-qualitative, since there are no qualitative
differences to be had. I say: two possibilities, sure enough. And they
do indeed differ in representation de re: according to one I am the
first-born twin, according to the other I am the second-born. But
they are not two worlds. They are two possibilities within a single
world. The world in question contains twin counterparts of me,
under a counterpart relation determined by intrinsic and extrinsic
qualitative similarities (especially, match of origins.) Each twin is a
possible way for a person to be, and in fact is a possible way for me
to be. I might have been one, or I might have been the other. There
are two distinct possibilities for me. But they involve only one such
possibility for the world: it might have been the world inhabited by
two such twins.” – David Lewis, ‘On the Plurality of Worlds’, p231

In this passage Lewis wants to reconcile two things. He wants to deny a version of
haecceitism that states that there can be qualitatively identical possible worlds
which differ only with respect to what de re possibilities they represent for some
individual, while making sense of the intuitive claim that the first born twin
might have switched places with the second born twin while keeping everything
else fixed. To do this he introduces possibilities.

While we diverge from Lewis in the details, this is the basic motivation
behind our solution. One and the same world can represent an object de re in
multiple ways. Each of these ways is a possibility. If possibilities are worlds
‘plus some extra information’, it is this extra information that allows for us to
account for the haecceitistic differences between the possibilities, but it is also
what accounts for the differences in representation de re. The extra information
determines how each individual gets represented in the possibility. A natural
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way to think of a possibility is an ordered pair of a world, and a function taking
possibilia to objects existing in the world - each individual is taken to their
representative in that world.

To fix ideas, consider Lewis’s twins. There are two possibilities within one
world; one in which Lewis is the first born, and one on which he is the second
born.

1. 〈w, σ〉 where σ is a function taking Lewis to the first born twin. That is,
in this possibility Lewis is represented by the first born twin.

2. 〈w, σ′〉 where σ′ is a function taking Lewis to the second born twin, but
otherwise takes the same values as σ. In this possibility Lewis is repre-
sented by the second born twin.

While the difference in σ and σ′ comprises a haecceitistic difference in the pos-
sibilities, it involves no difference in the world coordinate.

Once we have chosen the actual possibility, it is quite simple to give the
truth clause for @φ with respect to a sequence of individuals and a world. We
simply look at the representatives of each object in the sequence at the actual
possibility, and ask whether this new sequence of representatives satisfies φ at
the world coordinate.

So this leaves the crucial question: which possibility is the actual possibility?
The non-haecceitistic facts must certainly match the way things actually are,
and the actual individuals must certainly be represented by themselves. Thus
the actual possibility consists of a pair 〈w∗, σ∗〉 where w∗ is the actual world
and σ∗(x) = x for every actual individual x. This just leaves it open how
the non-actual objects get represented. Perhaps there is a canonical way of
assigning non actual objects representatives: each possible individual is assigned
its best actual representative. I would not hold out hope for such a miraculous
coincidence. But even if it were true, it is surely not even epistemically necessary
that the the non-actual objects have unique best counterparts to act as their
representatives. If b and c are two actual counterparts of a which are on a par
I say it is indeterminate whether b or c actually represents a. If it is also the
case that b is F and c isn’t, I say it is indeterminate whether a is actually F .
More generally, if a formula of QML@ is true no matter which possibility we
choose as actual, so long as it matches actuality in the non-haecceitistic facts,
and represents actual objects as themselves, say the formula is determinately
true. If it is false no matter what, call it determinately false. Indeterminacy in
the intended model will be rare and harmless - it will only occur when we are
able to refer to non actual objects which have several actual counterparts with
different properties.

Note that for the standard QML semanticist this distinction does not even
arise. For her non-actual objects don’t get represented at all at the actual world
(after all, you can only represent where you exist, and such individuals don’t
actually exist.) It is only when you have a counterpart in the actual world
distinct from yourself that it makes a difference, and even then, it only makes
a difference when there is more than one such counterpart.
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1.1 Indeterminacy in representation

The theory sketched above, and given more fully in §2, is not the only way a
counterpart theorist might go. There is a quick fix that does not deviate too
much from the original counterpart theory of Lewis. The fix relies on a proper
understanding of the Kripke semantics for quantified modal logic. The basic
idea is that given a predicate P and a Lewis style interpretation of P , F (a set
of possibilia), we may give a more traditional interpretation to P , so that it
varies its extension from world to world. The extension of the predicate, P at
a world, w, call it F ∗(w), is just the set of objects that have an F counterpart
in w. In a slogan: being F -at-a-world is simply having an F counterpart there.
F ∗(·) is an intension of the sort found in a Kripke model. More details can be
found in the appendix. Since we are interpreting QML@ standardly, the logic of
@ will be perfectly classical. Indeed it can be shown that validity with respect
to the class of models defined in this way is sandwiched between validity with
respect to two well studied classes of Kripke models.3

However, although the logic might be acceptable - after all it is sandwiched
between two acceptable notions of validity - there is no guarantee it will assign
the right truth conditions. Indeed there is a simple argument that the correct
truth conditions will be indeterminate, whereas the current proposal does not
postulate any indeterminacy.4 Suppose we have non-actual Ned for whom, in
the actual world, there are two perfect candidates to be his counterpart: Ted
and Fred. We may assume for the sake of argument that the actual world is a
perfect mirror world containing only two objects, Ted and Fred, who are perfect
duplicates of one another. Let T and F be the predicates of being Ted and
being Fred, and let a be a name for Ned.5 Given the description of the situation
we must surely hold the following.

1. The correct counterpart theory should not commit us to one of @Ta and
@Fa without the other.

2. @(Ta ∨ Fa) is true.

3. ¬@(Ta ∧ Fa) is true.

Points 2. and 3. are simple. There are only two candidate counterparts for
Ned in the actual world so Ned is one or the other, but he cannot be both.
Point 1. is true because, by stipulation, both Fred and Ted are equally good
candidates. How could Ned possibly be represented by one and not the other;
they are perfect and symmetrical duplicates. It would be intolerably arbitrary
to assert or deny one of @Ta and @Fa but not the other.

But here is the trouble for the counterpart theory described above. Accord-
ing to any standard attempt to capture this sentence using the Kripke semantics,
we are committed to there being a matter of fact which one of @Ta or ¬@Ta

3See definition 2.0.8.
4This is a straightforward adaptation of an argument presented by Fara and Williamson.
5The use of predicates is just so we do not need to talk about identity.
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holds. Thus by 1. we are committed to (@Ta ↔ @Fa). The fact that @ com-
mutes with the truth functional connectives, in conjunction with 2. and 3. gives
us (@Ta ↔ @Fa) ∧ (@Ta ∨ @Fa) ∧ ¬(@Ta ∧ @Fa), which is an inconsistency
in propositional logic.

Someone postulating indeterminacy, on the other hand, may accept 1., 2.
and 3. There are at least two admissible actualities, one that represents Ned
as Ted, and one that represents Ned as Fred. @Ta is true on the first actu-
ality, and @Fa is true on the second actuality. Neither, however, are true on
both, so neither is determinately true - they are both borderline. Nonetheless
(@Ta ↔ @Fa) is determinately false - every actuality that makes @Ta true
makes @Fa false, and vice versa. Fara and Williamson took this to be a reduc-
tio of counterpart theory. However I think a better conclusion to draw is that
if counterpart theoretic semantics is to succeed in accommodating an actuality
operator it ought to be a semantics which permits indeterminacy about what
gets represented by what. It is to such a semantics which we turn to now.6

2 A counterpart theoretic semantics for QML@

In what follows we shall provide a counterpart theoretic semantics for an identity
free quantified modal logic with an actuality operator QML@. We then show
that validity on this counterpart theoretic semantics is equivalent to validity
with respect to the ordinary variable domain Kripke semantics [6].

Our object language, L, consists of the following symbols:

• A denumerable set of variables, x1, x2, . . . ∈ V ar

• Predicate symbols of various arity: Pn1 , P
n
2 , . . . ∈ Predn, n ∈ ω

• Logical connectives ∨,¬

• Quantifier ∃

• Modal operators 3, @

The well formed formulae of L are given as follows:

• If xi1 . . . xin ∈ V ar and Pni ∈ Predn, then Pni xi1 . . . xin ∈ Form(L)

• If φ, ψ ∈ Form(L) then (φ ∨ ψ),¬φ, ∃xiφ,3φ,@φ ∈ Form(L)

6An anonymous referee has pointed out to me that there are ways to tweak the proposal in
this section to allow for indeterminacy. For example, by allowing the intended model to consist
of several Kripke models based on different counterpart relations as described above. This
would do the job within the constraints I have set, however one might wonder if such a proposal
could really be called a counterpart theoretic semantics. For it to work the ‘counterpart’
relations must be sensitive to non-qualitative haecceitistic differences – for example there
must be a counterpart relation which relates Ned to Fred but not Ted, and one which relates
Ned to Ted but not Fred. The approach I espouse has a better claim to being called a
‘counterpart theoretic semantics’ as it is a qualitative counterpart relation which determines
which possibilities there are. However, I don’t mean to suggest that ensuing proposal is forced
on us by these considerations.

8



• If S satisfies the above conditions, then Form(L) ⊆ S.

Definition 2.0.1. A counterpart structure is a quintuple 〈W,D, Ind(·), C, w∗〉
satisfying the following conditions:

1. W and D are non-empty.

2. C ⊆ D ×D is a reflexive relation.

3. Ind :W → P(D)

4. w∗ ∈ W and Ind(w∗) 6= ∅

Informally we refer to W as the worlds, D the individuals, C the counterpart
relation and w∗ the actual world of the counterpart structure.

A counterpart structure is essentially a variable domain Kripke structure
with the addition of a counterpart relation. Since counterpart structures are
simple generalisations of Kripke structures, they are compatible with the same
metaphysical hypotheses the Kripke structures can be used to model. In par-
ticular, counterpart structures and Kripke structures are both compatible with
transworld identity. Unlike Lewis, we allow the worlds domains to overlap.

Notice that allowing the domains to overlap, and treating the counterpart
relation as a relation over individuals allows the counterpart relation to be
stronger than a qualitative similarity relation. This raises the following worry.
Suppose you are an anti-essentialist, and do not want, say, John in this world to
be a counterpart of John in a poached egg world, a world where John is a poached
egg. Since the the counterpart relation cannot see which world the individual it
is considering is at, and it is reflexive, John is always a counterpart of himself.
One fix would be to treat the counterpart relation as a four place relation,
relating an individual at a world, to an individual at a possibly different world.
This maybe conceptually more satisfying, but is a deviation from currently
entrenched literature. It is simple to accommodate the anti-essentialist within
the above framework by forcing the domains to be disjoint by taking ersatz
individuals: individual world pairs. It should not be assumed that the intended
interpretation treats D as a set of ordinary objects.

Definition 2.0.2. A counterpart model is a sextuple 〈W,D, Ind(·), C, w∗, J·K·〉
where 〈W,D, Ind(·), C, w∗〉 is a counterpart structure, and

• J·K· : [Predn → [W → P(Dn)]]

Intuitively, we may think of JPni K : W → P(Dn) as the intension of Pni , as-
signing Pni an extension at each world. If the extension of every predicate at a
world is constructed from the objects in the domain of that world, say that the
counterpart model is serious. Stating this constraint more precisely:

• For w ∈ W, Pni ∈ Predn, JPni Kw ⊆ Ind(w)n
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In what follows we restrict our attention to non-serious counterpart models
and non-serious Kripke models. The seriousness constraint on models forces
predicates to take their extension at a world from the domain at that world.
Intuitively this corresponds to objects only being allowed to instantiate atomic
properties at worlds where they exist. Since serious counterpart models and
serious Kripke models are special cases of the general models defined here, we
ignore the seriousness constraints. Similarly we concentrate on variable domain
models, since the fixed domain models are special cases of these.

Definition 2.0.3. Given a counterpart structure, 〈W,D, Ind(·), C, w∗〉, and a
world, w ∈ W, we say that σ is a counterpart function for w iff σ is a
function from D into D which is a subset of C. We write it as follows:

• CF (σ,w)⇔ σ : D → D,σ ⊆ C

Definition 2.0.4. Given a counterpart structure, A = 〈W,D, Ind(·), C, w∗〉, we
may define the set of possibilities, S, with respect to the structure:

• S(A) := {〈w, σ〉 | w ∈W,CF (σ,w)}

Each world is paired with a counterpart function for that world, which provides
the extra information concerning how things get represented de re.

Counterpart functions encode ways possibilia might be represented at a
world: haecceitistic information, or information about how the possible indi-
viduals get represented de re. Possibilities are worlds plus haecceitistic infor-
mation. On some metaphysical views, worlds alone do not contain haecceitistic
information, but even if they do, it may not be this information that makes our
ordinary modal talk true.

As it stands the world coordinate, w, serves only to restrict the range of the
quantifiers at a possibility to objects in that world’s domain, and to determine
the extension of the atomic predicates.7 It is consistent with our constraints that
there is a possibility, 〈w, σ〉, such that no member of the domain w represents
any possibilia at all according to σ. Although I think the current framework has
a perfectly legitimate interpretation, one might want to work with a restricted
set of possibilities. In particular one might want to stipulate that any possibility
based on a world w, must be one in which every member of w’s domain represents
something. Let us call this condition the ‘exhaustion condition’, which a pair
〈w, σ〉 satisfies iff

∀y ∈ Ind(w),∃x ∈ D such that σ(x) = y.

The exhaustion condition ensures that every object in the domain of a possibility
represents something according to that possibility. One might want to restrict
attention to possibilities which satisfy the exhaustion condition. A stronger
condition is the ‘identity condition’, according to which every individual in the
domain of the world coordinate of a possibility represents itself.

7See the definition of satisfaction at a possibility below.
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∀x ∈ Ind(w), σ(x) = x.

As it happens the proofs of theorem 2.1 and 2.2 below will go through if one in-
stead defined S(A) to be the set of counterpart functions for A which satisfy the
exhaustion condition, or the identity condition. For the purposes of framework
building I shall not take sides on which class of possibilities is philosophically
correct.

Presumably among these possibilities there are ones that represent the way
things actually are. Although it seems natural for actual objects to be rep-
resented by themselves in actual possibilities, typically non-actual objects can
be represented in multiple ways. There is nothing particularly special about
any one way of representing the individuals, and indeed we should expect there
to be multiple ways to represent the non-actual objects all equally compatible
with the way we use modal idioms in natural languages. When a sentence is
sensitive to the multiple ways of assigning counterparts compatible with facts
about English, we should not expect the truth of that sentence to be settled
by use facts and the state of the modal universe. This motivates the following
definition.

Definition 2.0.5. An admissible actuality, for a counterpart structure 〈W,D, Ind(·), C, w∗〉,
and a world, w ∈ W is a possibility of the form 〈w∗, τ〉 such that ∀x ∈ Ind(w∗)(τ(x) =
x)

As usual, we define a valuation to be a function v : N → D. Note that
valuations can take their values from individuals which needn’t exist in the
same world. For valuations v and u, and n ∈ N write v[n]u to mean v(xm) =
u(xm),∀m 6= n. Given a counterpart model M = 〈W,D, Ind(·), C, w∗, J·K〉, and
an admissible actuality s = 〈w∗, σ∗〉 for that structure, we define the satisfaction
relation with respect to a possibility and a valuation, 〈M, s〉, 〈w, σ, v〉 |= φ,
as follows (we omit the model and actuality when there is no possibility of
confusion)

〈w, σ, v〉 |= Pni x1, . . . , xn ⇔ 〈σ(v(x1)), . . . , σ(v(xn))〉 ∈ JPni Kw

〈w, σ, v〉 |= ¬φ⇔ 〈w, σ, v〉 6|= φ

〈w, σ, v〉 |= (φ ∧ ψ)⇔ 〈w, σ, v〉 |= φ and 〈w, σ, v〉 |= ψ

〈w, σ, v〉 |= @φ⇔ 〈w∗, σ∗, v〉 |= φ

〈w, σ, v〉 |= 3φ⇔ 〈w′, σ′, v〉 |= φ for some 〈w′, σ′〉 ∈ S
〈w, σ, v〉 |= ∃xiφ⇔ 〈w, σ, v′〉 |= φ for some v′[i]v such that v′(x) ∈ Ind(w)

We can then introduce the standard definitions of truth, validity and conse-
quence as follows:

Definition 2.0.6. Given a counterpart structure A = 〈W,D, Ind(·), C, w∗〉, and
a model M = 〈A, J·K〉 based on the structure, say that a formula, φ is

• true in the model M = 〈A, J·K〉 with respect to an admissible actuality
s = 〈w∗, σ∗〉 and a valuation v iff 〈M, s〉, 〈w∗, σ∗, v〉 |= φ.
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valid in A iff 〈M′, s〉, 〈w∗, σ∗, u〉 |= φ for every model, M′ = 〈A, J·K′〉,
based on A, every valuation u and every admissible actuality s = 〈w∗, σ∗〉.

• a consequence of Γ in A iff for any model,M′ = 〈A, J·K′〉, based on A, any
admissible actuality s = 〈w∗, σ∗〉 and any valuation v, if 〈M′, s〉, 〈w∗, σ∗, v〉 |=
ψ,∀ψ ∈ Γ, then 〈M′, s〉, 〈w∗, σ∗, v〉 |= φ.

We now have a notion of validity for formulae of QML@ based on a coun-
terpart theoretic semantics. How do we know that the semantics we have in-
troduced does not validate the “wrong” formulae? Luckily, it is straightforward
to check our semantics gives the correct results with respect to the problematic
formulae Fara and Williamson identify. But we can be a bit more general: we
can show that, if a standard Kripke semantics for QML@ gets the right results,
then so does the counterpart theoretic semantics. Let’s start by outlining the
Kripke semantics for QML@. I also consider a variation, the ‘serious Kripke
semantics’, for contrast, however our target is the broader notion of validity for
Kripke models.

Definition 2.0.7. A Kripke structure is a quadruple 〈W,D, Ind(·), w∗〉 sat-
isfying the following conditions:

1. W and D are non-empty.

2. Ind :W → P(D)

3. w∗ ∈ W and Ind(w∗) 6= ∅

Definition 2.0.8. A Kripke model is a quintuple 〈W,D, Ind(·), w∗, J·K·〉 where
〈W,D, Ind(·), w∗〉 is a Kripke structure, and

• J·K· : [Predn → [W → P(Dn)]]

Intuitively, we may think of JPni K : W → P(Dn) as the intension of Pni . Once
again we say that a Kripke model is serious if it satisfies the following condition
for every predicate:

• For w ∈ W, Pni ∈ Predn, JPni Kw ⊆ Ind(w)n

Truth in a Kripke model with respect to a valuation and world,M, 〈w, v〉 |=
φ is given as usual (again omit the model when there is no ambiguity):

〈w, v〉 |= Pni x1, . . . , xn ⇔ 〈v(x1)), . . . , v(xn))〉 ∈ JPni Kw

〈w, v〉 |= ¬φ⇔ 〈w, v〉 6|= φ

〈w, v〉 |= (φ ∧ ψ)⇔ 〈w, v〉 |= φ and 〈w, v〉 |= ψ

〈w, v〉 |= @φ⇔ 〈w∗, v〉 |= φ

〈w, v〉 |= 3φ⇔ 〈w′, v〉 |= φ for some w′ ∈ W
〈w, v〉 |= ∃xiφ⇔ 〈w, v′〉 |= φ for some v′[i]v such that v′(x) ∈ Ind(w)

Definition 2.0.9. Given a Kripke structure A = 〈W,D, Ind(·), w∗〉, and a
model 〈A, J·K〉 based on the structure, say that a formula, φ is

12



• true in the modelM = 〈A, J·K〉 with respect to a valuation v iffM, 〈w∗, v〉 |=
φ.

• valid in A iff M′, 〈w∗, u〉 |= φ for every model, M′ = 〈A, J·K′〉, based on
A and every valuation u.

• a consequence of Γ in A iff for any model, M′ = 〈A, J·K′〉, based on A,
and any valuation v, if M′, 〈w∗, v〉 |= ψ,∀ψ ∈ Γ, then M′, 〈w∗, v〉 |= φ.

It should be noted that in concentrating on Kripke models, and not serious
Kripke models, I have taken sides on a substantial issue. According to a non-
serious Kripke model, an individual may satisfy an atomic predicate even if it
doesn’t exist at that world. If I have the instructions and pieces to make a toy
plane, and I am imagining the plane that would have been built if I had followed
the instructions, one might want to say that there could have been something
I’m actually imagining, namely the toy that would have been built, but which
doesn’t actually exist. This sentence, formalised as 3∃x(@Iax ∧ @¬∃yx = y),
is not satisfiable in any serious Kripke model, but is satisfiable over the wider
class of Kripke models.

Our conception of a possibility reflects this choice. A possibilia’s represen-
tative at a possibility needn’t be in the domain at that possibility. Thus, for
example, the object representing the possible toy plane at a given possibility
may not belong to that possibilities domain.8

We are now in a position to compare the notions of Kripke validity and
counterpart validity.

Theorem 2.1. Let M = 〈W,D, Ind(·), C, w∗, J·K〉 = 〈A, J·K〉 be a counterpart
model, and s = 〈w∗, σ∗〉 be an admissible actuality for A. Then there is a Kripke
model M′ = 〈W ′,D′, Ind′(·), w∗′, J·K′〉 such that the following are equivalent for
any formula φ:

• 〈M, s〉, 〈w, σ, v〉 |= φ for every 〈w, σ〉 ∈ S(A) and every valuation v

• M′, 〈w, v〉 |= φ for every w ∈ W ′ and valuations v.

Proof. Given a counterpart model M = 〈W,D, Ind(·), C, w∗, J·K〉 we define a
Kripke model M′ = 〈W ′,D′, Ind′(·), w∗′, J·K′〉 as follows:

• W ′ := S(A) the set of possibilities for A

• D′ := D

• Ind′(〈w, σ〉) := Ind(w)

• w∗′ := 〈w∗, σ∗〉
8A corresponding notion of a serious possiblity could be defined as pair 〈w, σ〉 where σ is

a partial function σ : D ⇀ D, which is a subset of the counterpart relation, and is such that
the range of σ, σ(D) is a subset of Ind(w). According to this conception the representative
of a possible individual at a possibility always exists at at the possibility in question.

13



• JPni K′〈w,σ〉 := {〈a1, . . . , an〉 | 〈σ(a1), . . . , σ(an)〉 ∈ JPni Kw}

The proof is an easy induction on the complexity of φ. Our inductive hypothesis
is that for every 〈w, σ〉 ∈ S(A) =W ′ and every valuation v: 〈M, s〉, 〈w, σ, v〉 |=
φ⇔M′, 〈〈w, σ〉, v〉 |= φ.

Base case: by the truth clause for counterpart models 〈M, s〉, 〈w, σ, v〉 |=
Pni x1 . . . xn iff 〈σ(v(x1)), . . . , σ(v(xn))〉 ∈ JPni Kw. But by definition of our
Kripke model, this holds just in case 〈v(x1), . . . , v(xn)〉 ∈ JPni K′〈w,σ〉 which
by the atomic truth clause for Kripke models means that M′, 〈〈w, σ〉, v〉 |=
Pni x1 . . . xn.

Inductive step: the cases for ¬φ, (φ∨ψ), 3φ and @φ are straightforward.
The ∃xiφ case is worth noting: 〈M, s〉, 〈w, σ, v〉 |= ∃xiφ iff 〈M, s〉, 〈w, σ, v′〉 |= φ
for some v′[i]v such that v′(i) ∈ Ind(w). By inductive hypothesis 〈M, s〉, 〈w, σ, v′〉 |=
φ holds iff M′, 〈〈w, σ〉, v′〉 |= φ. Also v′(i) ∈ Ind′(〈w, σ〉) since Ind′(〈w, σ〉) =
Ind(w), so by the truth clause for ∃, M′, 〈〈w, σ〉, v〉 |= ∃xiφ. The converse is
similar.

Note that in particular 〈M, s〉, 〈w∗, σ∗, v〉 |= φ⇔M′, 〈w∗′, v〉 |= φ.

Theorem 2.2. Let M = 〈W,D, Ind(·), w∗, J·K〉 = 〈A, J·K〉 be a Kripke model.
Then there is a counterpart model M′ = 〈W ′,D′, Ind′(·), C, w∗′, J·K′〉 = 〈A′, J·K′〉
and an admissible actuality, s for that model such that the following are equiv-
alent for any formula φ:

• 〈M′, s〉, 〈w, σ, v〉 |= φ for every 〈w, σ〉 ∈ S(A′) and every valuation v

• M, 〈w, v〉 |= φ for every w ∈ W and valuations v.

Proof. Note that the counterpart semantics is just a generalization of the Kripke
semantics. Given M = 〈W,D, Ind(·), w∗, J·K〉 we take our counterpart model
simply to be M = 〈W,D, Ind(·),=, w∗, J·K〉 where the counterpart relation is
just the identity relation. In these kinds of models the distinction between
worlds and possibilities collapse, and the truth clauses match those for the
Kripke semantics.

Corollary 2.3. A formula, φ, in the language of QML@ is valid in every
counterpart structure if and only if it is valid in every Kripke structure.

Proof. This is a direct consequence of theorems (2.1) and (2.2).

2.1 Concluding remarks

Fara and Williamson’s strategy in [2] is to show that informally inconsistent
formulae of QML@ have a consistent interpretation in variants of Lewis’s coun-
terpart theory. It is a straightforward consequence of corollary 2.3 that there can
be no such argument against the counterpart theoretic semantics for QML@ we
have given here. Assuming that no informally inconsistent formula of QML@ is
satisfied in a Kripke model, it follows that no inconsistent formula is satisfiable
in a counterpart theoretic model.
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As an example of this general fact, let us reconsider the formula (1) intro-
duced in section 1:

3∃x(@Fx↔ @¬Fx) (2)

This formula is not satisfied in any counterpart model, relative to any admissible
actuality 〈w∗, σ∗〉. For otherwise there would be some possibility, 〈w, σ〉, and
some object a ∈ Ind(w) such that w, σ, v |= @Fx ↔ @¬Fx where v is any
valuation with v(x) = a. Following through the satisfaction clauses this would
imply that w∗, σ∗, v |= Fx if and only if w∗, σ∗, v 6|= Fx which is a contradiction.

Indeed, it seems as if there is no logical difference between the counterpart
theoretic and Kripke semantics for quantified modal logic. The dispute, at it’s
heart, is about the correct analysis of modal predication. What I hope to have
shown is that the basic tenets of Lewis’s analysis of modal predication can be
reconciled with the logic, syntax and, perhaps, the ontological innocence of
traditional uses of quantified modal logic.9

3 Appendix

Here we address some miscellaneous issues raised in the paper.

3.1 Extending the language

So far we have considered only languages without identity. In such languages the
Kripke and the counterpart theoretic model theory coincide. We shall see that
this result extends to languages with identity, provided we interpret the identity
relation in a certain way. However it can be seen that one can also introduce
a relation of ‘loose identity’ which captures the notion of two objects being
‘represented as the same’. The inclusion of this relation allows the counterpart
theorist to say, for example, that the statue and the lump are only contingently
identical. One cannot do this using the ordinary identity relation.

Let us augment QML@ by two binary relations, = and '. Thus our language
is defined as in section 2, except that we add the extra clauses

• If xi, xj ∈ V ar then xi = xj ∈ Form(L) and xi ' xj ∈ Form(L).

We adopt the same satisfaction clauses as before with the addition of:

〈w, σ, v〉 |= xi = xj ⇔ v(xi) = v(xj)

〈w, σ, v〉 |= xi ' xj ⇔ σ(v(xi)) = σ(v(xj))

a and b are strictly identical at a world iff they are the same object, whereas a
and b are loosely identical at a world iff they are represented as the same object

9I would like to thank the audience of the Oxford-Paris Workshop on Language and On-
tology in June 2008 for many helpful comments. Special thanks are due to Jeff Russell and
Timothy Williamson for providing me with substantial comments on an earlier version of this
paper and an anonymous reviewer for this journal who suggested some valuable improvements
for this version.
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there. If a and b are strictly identical they are loosely identical, however the
converse may fail.

Logically speaking, the logic of counterpart structures in a language with =
and ' conservatively extends the logic of Kripke structures in a language with
only =. Thus = satisfies a completely standard logic of identity. In particular,
the formulae containing only strict identity which are valid in every counterpart
model are the same as those valid in every Kripke model.10

Loose identity, ', does not behave like strict identity. For example, loose
identity between two objects may be contingent. Similarly, loose identity does
not obey Leibniz’s law. The inclusion of loose identity is an important feature,
since this is the first point at which the Kripke semantics and the counterpart
semantics differ in the object language. I leave it to a future project, however,
to determine what the logic of ' is with respect to these models.

3.2 A non-supervaluationist semantics

According to the variable domain Kripke semantics, the extension of a predicate
at a world need not necessarily consist of objects existing at that world. Some
modal logicians, the ‘serious actualists’, prefer to consider a smaller class of
models than Kripke did and stipulate that an individual can only have an atomic
property at a world at which it exists, restricting, for example, the extension of
a monadic predicate at a world to being a subset of the domain of that world.
The more general semantics outlined by Kripke, however is compatible with
individuals being world bound, while varying their properties from world to
world.

An alternative way to give a counterpart theoretic interpretation QML@
involves simply using the Kripke semantics directly. The basic idea is that the
extension of a predicate, P , at a world, w, is just the set of objects that have an
F counterpart in w (here F is the Lewis style property, a set of possibilia, that
interprets P .) Being F -at-a-world is simply having an F counterpart there.
This gives us a general method for converting a Lewis model for first order
counterpart theory, into a Kripke model. Suppose we have a first order Lewis
style model for counterpart theory, 〈D, J·KL〉. Let D be the domain, let J·KL
be the interpretation function for our model, and let C := JCKL be the relation
that interprets the counterpart relation. The primitive predicates of Lewis’s
counterpart theory are: W , I, C and @ - the predicates for worldhood, world
parthood, counterparthood and the name of the actual world. We assume also
that the language contains non counterpart theoretic vocabulary: Pni for n, i ∈
ω. To get a Kripke model, 〈D,W, Ind(·), w∗, J·KK〉, we need a domain, a set
of worlds, a domain for each world, an actual world and an interpretation for
the non-logical predicates. We obtain them from the Lewis interpretation as
follows:

• D := D

10This can be seen by a trivial modification of the proofs of theorem 2.1 and 2.2.
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• W := JW KL

• Ind(w) := {x ∈ D | 〈x,w〉 ∈ JIKL}

• w∗ := J@KL

• JPni KK(w) := {x ∈ D | ∃y ∈ Ind(w)(Cxy ∧ y ∈ JPni KL)}

What should we expect the logic to look like? Does every Kripke model
represent a logically possible way of interpreting the language? Does the coun-
terpart theoretic constraint on the interpretation of the atomic predicates only
enter the picture at the intended interpretation? If so, we should expect the logic
to be equivalent to the Kripke semantics. However, this is not a particularly
interesting response. One might want to know if the logic is still acceptable if we
keep the constraint in place across models. The theorem below demonstrates
that it is still acceptable. Call the set formulae valid with respect to Kripke
models obtained by first order counterpart models CT, and call the formulae
valid with respect to all Kripke models, and all serious Kripke models K and
SK respectively. We show that K ⊆ CT ⊆ SK. Every valid formula according
to the Kripke semantics is in CT, so CT satisfies the minimum requirement of
containing formulae that are valid in the widest sense. CT does not deem out-
right inconsistent formulae consistent. However, CT does not make too many
formulae valid either. For example CT does not say that every object exists
necessarily, or that every property is had necessarily, if had possibly. For any
formula in CT is also valid according to the class of serious Kripke models. SK
provides an upperbound.

Theorem 3.1. K ⊆ CT ⊆ SK

Proof. Clearly K ⊆ CT since the counterpart models are Kripke models by
construction. To show CT ⊆ SK we find a counterpart model for each serious
Kripke model which makes the same formulae true.
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Let M = 〈W,D, Ind(·), w∗, J·K〉 be a serious Kripke model and v an assign-
ment of variables to elements of D. We then construct a first order counterpart
model, 〈D, JKL〉 as follows.

• D := {〈x,w〉 ∈ D ×W | x ∈ Ind(w)}

• JW KL :=W

• JIKL := {〈〈x,w〉, w′〉 | w = w′}

• JCKL := {〈〈x,w〉, 〈x′, w′〉〉 | x = x′}

• J@KL := w∗

• JPni KL := {〈〈x1, w〉, . . . , 〈xn, w〉〉 | 〈x1, . . . , xn〉 ∈ JPni K(w)}

It is easy to check that this model satisfies Lewis’s original axioms of counter-
part theory. Now consider the Kripke model induced by this counterpart model:
MK = 〈WK ,DK , IndK(·), w∗K , J·KK〉. Using choice, we may match each indi-
vidual in the original D with an individual in DK ; for each x ∈ D we pick a
world such that x exists in w, and match x with 〈x,w〉 ∈ DK . We convert the
variable assignment, v, for M to a variable assignment, vK , for DK by letting
vK(xi) take the value corresponding to v(xi), for each i. Now we must check for
each formula, world and valuation, φ, w and v, that M, w, v |= φ if and only if
MK , w, vK |= φ. The proof is a straightforward induction - we begin by checking
the atomic formulae. To save time we consider only monadic predicates. Note
that MK , w, vK |= Fxi if and only if vK(i) := 〈x,w′〉 ∈ JF KK(w) which hap-
pens if and only if there is a 〈y, w′′〉 such that I〈y, w′′〉w holds, C〈x,w′〉〈y, w′′〉
holds, and 〈y, w′′〉 ∈ JF KL. I〈y, w′′〉w holds iff w′′ = w, C〈x,w′〉〈y, w′′〉 holds
iff x = y, so the condition simplifies to 〈x,w〉 ∈ JF KL. By the construction
of the counterpart model, this happens iff x ∈ JF K(w), which is the condi-
tion for M, w, v |= Fxi. The truth functional and modal clauses are standard.
For the ∃ clause note that MK , w, vK |= ∃viφ iff for some uK [i]vK such that
uK(i) ∈ IndK(w), MK , w, uK |= φ. Now, there is a variable assignment for
M, u, that is matched to uK in the way described earlier. Thus by inductive
hypothesis we getMK , w, uK |= φ iffM, w, u |= φ. The way u is matched with
uK ensures that u(i) ∈ Ind(w) iff uK(i) ∈ IndK(w) and since u[i]v, we get
M, w, v |= ∃viφ. This completes the proof.

3.3 Extensional counterpart theory.

Possibilists traditionally treat counterpart theory as an extensional first order
theory in which one can quantify over the non-actual counterparts of actual
objects (see, e.g. [8].) Here we describe a first order language and a transla-
tion schema from QML@ to our language which accords with the counterpart
theoretic semantics we gave for QML@.

Standardly counterpart theorists will need the two primitive symbols: Iwx
and Cxy. I is the relation of being a part of a world, C is the counterpart
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relation. We shall use the primitive, Rsxy, interpreted as x is represented by y
in the possibility s (in our previous notation: x = σ(y) where s = 〈w, σ〉), and
Isx interpreted as x is part of the world w. The predicate As is interpreted
as saying that s is an admissible actuality. Variables x, y, z . . . range over
possibilia, variables s, t, u, v range over possibilities. We reserve one designated
variable, s∗ which ranges only over admissible actualities. Finally for each non
counterpart theoretic n-ary predicate, P , we assign an n + 1-ary predicate P ′.
We can give a translation schema of for QML@ as follows:

(Px1, . . . , xn)s 7→ ∃y1, . . . , yn(Rsy1x1 ∧ . . . ∧Rsynxn ∧ P ′y1 . . . yns)
(¬φ)s 7→ ¬(φs)

(φ ∧ ψ)s 7→ (φs ∧ ψs)
(∃xφ)s 7→ ∃x(Isx ∧ φs)
(3φ)s 7→ ∃s′φs

′
)

(@φ)s 7→ φs
∗

The translation of a formula, φ, of QML@ is given by φs
∗
. When doing the

standard Tarskian model theory for first order languages, we sometimes need a
notion of truth in a model for formulae containing free variables. It is traditional
to supervaluate: a formula is true if it is true with respect to every assignment
to the variables, and false if it is false with respect to every assignment to the
variables. Understanding free variables in this way delivers the same results
as the supervaluationist semantics presented in §2. A formula of QML@, φ,
translates to a first order formula provable from the axioms below if and only
if φ is valid with respect to every Kripke model.

1. ∀x∃sRsxx

Everything is represented by itself in some possibility.

2. ∀x∃sIxs

Everything exists in some world.

3. ∀s∀x∀y∀z((Rsxy ∧Rsxz)→ y = z)

An object never has more than one representative in a possibility.

4. ∀x∀s(Ixs→ ∃yRsxy)

If an object is part of a possibility, it represents some object.

5. ∀x(Ixs∗ → Rs∗xx)

Actual objects represent themselves in the actual possibility.

6. ∃xIxs∗

There is at least one actual thing.
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